

© 2017 Jamo Solutions NV Page 1

How to reduce the cost of mobile test creation
and automation

Introduction

Automation of user acceptance testing can be a reliable way to reduce the cost of testing, increase test
coverage and effectiveness, and shorten test cycles. Many development organizations consider
automation a vital step in establishing a mature QA practice, and it certainly can bring great benefits
when it is effectively leveraged.

This paper focusses mainly on the different aspects of creating and maintaining of automated test cases.
It is not intended to cover such topics as the definition of test cases, the process of determining which
test cases make good candidates for automation, or the analysis and qualification of test execution
reports. In the first section, we will recount how traditional automation technologies influence the
process of test automation, followed by the introduction of new automation methods that help remedy
some key roadblocks that are not addressed by standard automation practices.

Traditional test automation technologies

Without a doubt, test automation tools save time, increase test coverage, and ultimately help deliver
better quality applications faster. They do however tend to be quite costly, requiring sizable upfront
investments, which typically take between two and four years to fully pay off. The way most traditional
test automation tools work is by giving the QA engineer access to the application layer that is used by
developers to define the app’s user interface. The QA engineer must possess strong technical knowledge
to be able to work with this layer to determine which objects need to be verified, which data values
must be used, and which user actions trigger changes in specific objects.

© 2017 Jamo Solutions NV Page 2

Naturally, each software platform uses different technologies and protocols to define the app UI layer,
and if the app is intended to work across multiple platforms, such as Android, iOS, or the Web, it is
usually not possible to reuse the same automated script, requiring QA engineers to re-create the same
script on different platforms.

Another issue with using the app UI layer for test automation is that developers’ object definitions inside
the UI layer often don’t directly match the UI objects that are seen by the end user. Developers build UI
layers to get the system to display requested information in the fastest and most efficient way, but it
can cause issues when trying to use these objects for testing. Consider the following examples:

1. The main menu in iOS, Android, or Web apps is always stored in memory, however it is not
displayed until called by the user. When QA engineers use the UI layer for testing, the menu is
visible to them at all times, and testers need to write automation scripts to work around this
matter.

2. Most lists on Android and iOS contain only visible cells. For memory efficiency reasons, other
elements are not mapped into the UI memory. If a test needs to access an element that is not
currently visible, a QA engineer will have to make special provisions in the code to accommodate
this issue.

3. Users expect an attractive and eye-catching app interface, which causes the hierarchy of UI
elements to become more complex, forcing testers to scrutinize multiple objects to find the ones
needed for test automation.

The mapping of the technical layer to the visual objects is further complicated by the following:

 Responsive design: the app might display information slightly differently on smartphone screens
that are different sizes.

 Dynamic data: the data that is displayed in the app is updated either because it is delivered in real
time, or has changed as a result of the user’s actions. Dynamic data makes is difficult for a QA
engineer to use labels, text, or list cell positions to identify correct UI objects, further complicating
the process of automated test creation.

How much does it cost to create test scripts using traditional automation technologies?
Let’s try to estimate the total cost of test automation with the tools that are most widely used by
today’s testers. Inherently, the total cost of test automation depends on the number of test cases, but
for this scenario, let’s assume that a total of 60 test cases have been classified as good candidates for
automation. Upon initial review, the QA engineer identifies a number of test cases that are similar
enough to be covered by the same automation script. If some test cases use similar windows, common
scripts can be created for specified windows access. Taking into account these similarities, a typical
compression factor works out to be around 75%-80%, meaning that if the total number of test scripts
that have been qualified for automation is 60, the QA engineer will need to create between 45 and 48
automated scripts to cover all defined test cases.

© 2017 Jamo Solutions NV Page 3

Experience and industry data suggest that an average time to create one automated test case is six
hours. If a test case has to deal with responsive design or dynamic data, then the average time to create
an automated test case can double to 12 hours. The table below summarizes the costs of implementing
automated test cases.

 Best-case scenario Worst-case scenario

Number of test cases 60 60

Compression factor 75% 80%

Number of automated test cases 45 48

Hours required to implement one test case 6 12

Total hours needed for automation 270 576

Total days needed for automation 34 72

In this scenario, it will take between 34 and 72 person-days to automate 60 test cases, and that’s just
the cost of initial automation. Since the real ROI comes from test execution, let’s look into the added
cost of test maintenance between app releases and test cycles.

Even within a single release cycle, tests need to run multiple times, often causing automated scripts to
break. Here’s a look at the three most common reasons why this might happen:

1. The test script was written in a way that doesn’t take into account the fact that certain data values
cause an additional screen or dialog box to open.

2. Developers made changes to the UI layer without disturbing the display of the UI object, but
affecting the way the QA engineer identified the same UI object in the test script.

3. The test script is executed on a different version of the mobile OS than the one it was originally
created for, causing the differences in the technical UI layer to keep the script from running
correctly.

In our experience, even within the same release, between 10% and 20% of all test cases may break
between execution cycles, and will require maintenance. Now, let’s examine the scenario where a new
major version of the app is being released. Automated test cases need to be run against a new version
for regression testing – making sure the app still works despite the functionality changes made in the
new release.

Examples of the common factors that cause automated tests to break between different app versions
include the following:

1. New functionality introduces changes to the UI, requiring test scripts to be modified.
2. The visible UI might be identical, but the developer has made changes to the technical UI layer.
3. A particular screen still performs the same function, but the design elements of the UI have

changed, causing changes in the technical UI layer, on which the script has been built.

© 2017 Jamo Solutions NV Page 4

Between different major versions of the app under test, as much as 65% to 80% of all test cases may
need to be updated or rewritten. The table below illustrates the test case maintenance costs between
test cycles and app releases.

 Best-case

scenario
Worst-case
scenario

Number of test cases 60 60

Total days needed for automation 34 72

Percent of rework between test cycles 10% 20%

Number of days required for rework and maintenance between test cycles 3 14

Percent of rework between app releases 65% 80%

Number of days required for rework and maintenance between releases 22 58

The growing popularity of DevOps, agile
development, and continuous delivery practices
are putting traditional test automation tools
under increased pressure. Spending 22 days
maintaining scripts for each release is not only
excessively costly; it can jeopardize the main
objective of modern application delivery models
that are based on rapid release and feedback
cycles.

© 2017 Jamo Solutions NV Page 5

The new generation of automation tools improves testing time and agility

Jamo Automator works differently than traditional test automation solutions. To identify UI objects, the
tool doesn’t rely on the details of the developers’ UI definition, making scripts more resilient to changes
in the technical UI layer.

Jamo Automator applies an advanced algorithm built using embedded AI to recognize correct UI
elements during test replay. The tester doesn’t need to know a lot about the technical definition of the
UI layer created by the developer. Cosmetic UI changes, dynamic data, responsive design, and
smartphone screen resolutions no longer pose threats to the test execution. As long as the app under
test offers the same user experience across platforms, the same script will work without modification on
iOS, Android, and other supported environments.

The user-friendly experience of Jamo Automator is based on building automated scripts by using the
graphical flow of test steps. With each step represented by a corresponding screen, a tester can identify
a relevant UI object by simply clicking on the screen, no programming required.

This new-generation automation tool reduces the time required to automate each test case to just 1-21/2
hours. Consider the time savings afforded by Jamo Automator as outlined in the table below:

 Best-case scenario Worst-case scenario

Number of test cases 60 60

Compression factor 80% 85%

Number of automated test cases 48 51

Hours required to implement one test case 1 2.5

Total hours needed for automation 48 127.5

Total days needed for automation 6 16

Automated test cases built with Jamo Automator can be executed without additional maintenance
against dynamic data, responsive design variations, and cosmetic changes; and there’s no dependency
on detailed definitions by the developer. Therefore test cases are less likely to break during test cycles
and between app releases. A test case can still be affected by the opening of a new window or a dialog
box that appears in response to new input data, but the overall percentage of broken test cases is far
lower than that of traditional automation techniques – generally in the vicinity of 5% to 10%. For
regression testing, only test cases affected by new functionality need to be adapted or rewritten,
typically around 20%-40% of all test cases. The sample cost of test maintenance and reuse with Jamo
Automator is outlined below:

 Best-case

scenario
Worst-case
scenario

Number of test cases 60 60

Total days needed for automation 6 16

Percent of rework between test cycles 5% 10%

Number of days required for rework and maintenance between test cycles 0 2

Percent of rework between app releases 20% 40%

Number of days required for rework and maintenance between releases 1 6

© 2017 Jamo Solutions NV Page 6

Conclusion

Using a next-generation tool like Jamo Automator helps significantly reduce the time and effort required
for creating and maintaining of automated test cases, compared to traditional automation solutions.
The simplicity of script creation, combined with easy test script maintenance, resilience, and versatility
makes Jamo Automator an ideal fit for DevOps, agile, and continuous delivery methods. You no longer
have to wait 2-4 years to realize the ROI on your tools – returns can be achieved within a single release
cycle of your app.

Jamo Automator’s ease of use and visual interface allow for non-technical members of the QA team to
take an active role in the test automation process. The automation effort can be easily scaled to keep up
with release cycles and adapt to any organization’s needs.

Jamo Automator is cloud-based, making deployment as easy as connecting to a URL through a browser.
All your test data is securely stored on the cloud, accessible anytime, from any location.
To learn more, visit Jamo Solutions.

Sources:

a. Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An empirical analysis of flaky tests. In Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE 2014). ACM, New York, NY, USA,
643-653.

b. Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. 2017. Measuring the cost of regression testing in practice: a study
of Java projects using continuous integration. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2017). ACM, New York, NY, USA, 821-830.

c. Atif M. Memon and Myra B. Cohen. 2013. Automated testing of GUI applications: models, tools, and controlling flakiness.
In Proceedings of the 2013 International Conference on Software Engineering (ICSE '13).

